194 research outputs found

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Ionization of Hydrogen Atom by X-Ray Absorption in the Presence of Optical Laser Field

    Get PDF

    Effects of Variable Production Rate and Time-Dependent Holding Cost for Complementary Products in Supply Chain Model

    Get PDF
    Recently, a major trend is going to redesign a production system by controlling or making variable the production rate within some fixed interval to maintain the optimal level. This strategy is more effective when the holding cost is time-dependent as it is interrelated with holding duration of products and rate of production. An effort is made to make a supply chain model (SCM) to show the joint effect of variable production rate and time-varying holding cost for specific type of complementary products, where those products are made by two different manufacturers and a common retailer makes them bundle and sells bundles to end customers. Demand of each product is specified by stochastic reservation prices with a known potential market size. Those players of the SCM are considered with unequal power. Stackelberg game approach is employed to obtain global optimum solution of the model. An illustrative numerical example, graphical representation, and managerial insights are given to illustrate the model. Results prove that variable production rate and time-dependent holding cost save more than existing literature

    Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against Chikungunya, Dengue and Zika viruses

    Get PDF
    Current and reoccurring viral epidemic outbreaks such as those caused by the Zika virus illustrate the need for rapid development of antivirals. Such development would be facilitated by computational approaches that can provide experimentally testable predictions for possible antiviral strategies. To this end, we focus here on the fact that viruses are directly dependent on their host metabolism for reproduction. We develop a stoichiometric, genome-scale metabolic model that integrates human macrophage cell metabolism with the biochemical demands arising from virus production and use it to determine the virus impact on host metabolism and vice versa. While this approach applies to any host–virus pair, we first apply it to currently epidemic viruses Chikungunya, Dengue and Zika in this study. We find that each of these viruses causes specific alterations in the host metabolic flux towards fulfilling their biochemical demands as predicted by their genome and capsid structure. Subsequent analysis of this integrated model allows us to predict a set of host reactions, which, when constrained, inhibit virus production. We show that this prediction recovers known targets of existing antiviral drugs, specifically those targeting nucleotide production, while highlighting a set of hitherto unexplored reactions involving both amino acid and nucleotide metabolic pathways, with either broad or virus-specific antiviral potential. Thus, this computational approach allows rapid generation of experimentally testable hypotheses for novel antiviral targets within a host

    Multifractality and multifractal specific heat in fragmentation process in

    Get PDF
    We have investigated the multifractality of target fragments of 24Mg-AgBr interaction at low energy (4.5AGeV) using a new method as proposed by Takagi. The analysis involves the step of measuring the generalised dimension Dq, which in turn, deduce the multifractal behaviour of target fragments. Ultimately we determine multifractal specific heat. A comparison with other data is also done.Author Affiliation: Dipak Ghosh, Argha Deb, Keya Dutta (Chattopadhyay), Rinku Sarkar, Ishita Dutta and Mitali Mondal 1.Nuclear and Particle Physics Research Centre, Department of Physics, Jadavpur University, Kolkata-700 032, India E-mail : [email protected] and Particle Physics Research Centre, Department of Physics, Jadavpur University, Kolkata-700 032, Indi

    Effectiveness of malabaricone-A in P-glycoprotein over-expressing cancer cell lines

    Get PDF
    Background: A major impediment in treatment for cancers is resistance to chemotherapy and is primarily attributed to over-expression of efflux pumps. This study aimed to establish the cytotoxicity of malabaricone-A (MAL-A) in P-glycoprotein/multidrug resistance (P-gp/MDR) over-expressing hematopoietic cancer cell lines.Methods: Leukemia and multiple myeloma cell lines were indirectly evaluated for their P-gp/MDR status by examining Calcein-AM fluorescence and cell viability was assessed by the MTS-PMS assay.Results: The fluorescence of calcein was significantly decreased in three cell lines LP-1, RPMI-8226 and CEM-ADR 5000 and reversal with verapamil endorsed their P-gp/MDR activity. The mean IC50 of MAL-A in these MDR+ cell lines (5.40±1.41 to 12.33±0.78 µg/ml) was comparable with the MDR- leukemic (9.72±1.08 to 19.26±0.75 µg/ml) and multiple myeloma cell lines (9.65±0.39 to 18.05±0.17 μg/ml).Conclusions: Irrespective of their P-gp activity, the cytotoxicity of MAL-A was comparable, making it worthy of future pharmacological consideration in multidrug resistance

    Malabaricone-A Induces A Redox Imbalance That Mediates Apoptosis in U937 Cell Line

    Get PDF
    BACKGROUND: The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting both as secondary messengers in intracellular signaling cascades and sustaining the oncogenic phenotype of cancer cells, while on the other hand, it triggers an oxidative assault that causes a redox imbalance translating into an apoptotic cell death. PRINCIPAL FINDINGS: Using a tetrazolium [{3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl}-2H-tetrazolium] based cell viability assay, we evaluated the cytotoxicity of a plant derived diarylnonanoid, malabaricone-A on leukemic cell lines U937 and MOLT-3. This cytotoxicity hinged on its ability to cause a redox imbalance via its ability to increase ROS, measured by flow cytometry using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and by decreasing glutathione peroxidase activity. This redox imbalance mediated apoptosis was evident by an increase in cytosolic [Ca(2+)], externalization of phosphatidyl serine as also depolarization of the mitochondrial membrane potential as measured by flow cytometry. There was concomitant peroxidation of cardiolipin, release of free cytochrome c to cytosol along with activation of caspases 9, 8 and 3. This led to cleavage of the DNA repair enzyme, poly (ADP-ribose) polymerase that caused DNA damage as proved by labeling with 4',6-diamidino-2-phenylindole (DAPI); furthermore, terminal deoxy ribonucleotide transferase catalysed incorporation of deoxy uridine triphosphate confirmed DNA nicking and was accompanied by arrest of cell cycle progression. CONCLUSIONS: Taken together, compounds like MAL-A having pro-oxidant activity mediate their cytotoxicity in leukemic cells via induction of oxidative stress triggering a caspase dependent apoptosis

    Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of <i>Burkholderia pseudomallei</i>

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, plays a critical role in the orchestration of immune responses. S1P levels within the mammalian host are tightly regulated, in part through the activity of S1P lyase (S1PL) which catalyses its irreversible degradation. Herein we describe the identification and characterization of secreted S1PL orthologues encoded by the facultative intracellular bacteria Burkholderia pseudomallei and Burkholderia thailandensis. These bacterial orthologues exhibited S1PL enzymatic activity, functionally complemented an S1PL-deficient yeast strain, and conferred resistance to the antimicrobial sphingolipid D-erythro-sphingosine. We report that secretion of these bacterial S1PLs is pH-dependent, and is observed during intracellular infection. S1PL-deficient mutants displayed impaired intracellular replication in murine macrophages (associated with an inability to evade the maturing phagosome) and were significantly attenuated in murine and larval infection models. Furthermore, treatment of Burkholderia-infected macrophages with either S1P or a selective agonist of S1P receptor 1 enhanced bacterial colocalisation with LAMP-1 and reduced their intracellular survival. In summary, our studies confirm bacterial-encoded S1PL as a critical virulence determinant of B. pseudomallei and B. thailandensis, further highlighting the pivotal role of S1P in host-pathogen interactions. In addition, our data suggest that S1P pathway modulators have potential for the treatment of intracellular infection.We thank HL Ho & K Haynes (University of Exeter) for provision of strains and relevant vectors for yeast complementation studies. This work was supported by the Defence Science 26 and Technology Laboratory under contract DSTLX-1000060221 (WP1). CJM was funded by the EASTBIO Doctoral Training Partnership. The funders had no role in study design, data collection and analysis, or preparation of the manuscript
    corecore